
NEW SYSREPO

Michal Vaško
CESNET

24. August 2018
Brno



DESIRED PROPERTIES

sysrepo is ideally meant to handle all system configuration
 absolutely critical core software

MUST be
 stable

 robust

 reliable

SHOULD be
 simple

 small

 without unnecessary dependencies

 fast

 with simple API for clients

 customizable for low memory footprint or time efficiency



REMOVED FEATURES

Some sysrepo features will be removed
 gain of having the feature does not justify the added complexity

No sysrepod daemon
 only client library

No dependencies
 most likely none of the current ones will be required

No schema dependency tracking
 only data dependencies (still non-trivial – leafref, instance-identifier, must, when)

No NACM
 only current file access control (is it sufficient?)

No SR_EV_VERIFY?
 keep current functionality (but rename enum values)

 SR_EV_DONE (one callback call for each subscriber)

No session-exclusive changes
 candidate datastores for that



NEW SYSREPO DESIGN

All IPC using shared memory
 same synchronization (mutex, conditional variables or 

semaphore)
 data serialization problems

One context with all installed models
 data tree and notification files separate for models

 Installing new model
 as currently – permissions, owner

 optional replay support



NEW SYSREPO DESIGN

NMDA support
 startup, running, candidate, intended, operational datastores
 no need for enabled/disabled modules mechanism
 conventional datastores with all the data
 operational datastore with only subscribed to/provided data by 

clients

Data subscriptions
 these are the “enabled” data appearing also in operational datastore
 optionally, define a separate callback for getting these specific 

configuration data to appear in operational datastore
 callback for state data appearing in operational datastore



INTERNALS



SR_CONNECT

sr_connect()
 every client starts with this call to get a global handle
 handle is thread-safe (uses locks internally)
 creates local LY context (1.)

 in future, this could be a “compiled” LY context
 smaller context with only information required for data handling (could not be 

printed)
 ideally, also shared between all clients so only 1 instance is needed

 connects to the main SHM (3.)
 creates if does not exist (2.)
 creates data dependencies structure from stored data
 list of implemented models with data dependencies between them

 this internal global handle is required for all other API calls



SR_CONNECT



MAIN SHM

Created from persistent data files
 sysrepo-modules data tree
 sysrepo-notification-store data
 additional runtime data

 current subscriptions

Data serialized into main SHM
 including strings

 into data directly readable by all the clients
 no parsing required

 should be possible to effectively read each data structure separately

 implemented as several separate SHMs so they can be dynamically resized 
without affecting other data structures



MAIN SHM

sysrepo-modules
 currently sysrepo-module-dependencies.yang and sysrepo-

persistent-data.yang, merged into one model
 list of implemented modules with filepaths, enabled 

features
 imports are loaded automatically

 foreign leafref, instance-identifier, must, when node XPaths
 when a new model is installed, dependencies and all the existing 

contexts are updated



MAIN SHM

sysrepo-notification-store
 currently sysrepo-notification-store.yang
 different content from the existing model
 model-specific information

 model, revision, replay support

 model-specific notification file in a fixed (relative) path
 notification file format

 similar to what is defined in this model
 instead of a list, just one notification after another in LYB
 much faster notification storing



MAIN SHM

Current subscriptions
 serialized information about subscriptions
 implemented as many model-specific SHMs
 subscriptions are grouped based on their path

 one subscription for 1 – n subscribers for a specific path

 each subscription
 path
 signaling synchronization item for originator/subscribers
 space for secondary SHM segment identification
 the originators will communicate data to the subscriber using this 

separate SHM segment



SR_*_SUBSCRIBE

sr_*_subscribe()
 checks that the subscription path is valid
 adds this subscription to main SHM (1.)
 returns a subscription handle (2.)
 reuse of subscription handles (as it is currently)

Threading model
 as it is now – one subscription handle for 1 - n subscriptions
 but each subscription handle is tended to by one thread

 means it is waiting for signal in its main SHM subscription (3.)

 should achieve easy and flexible threading model customization
 keeps current API



SR_*_SUBSCRIBE



SECONDARY SHM

Configuration change subscription
 covers module-change, subtree-change
 diff

 changes
 instead of pointers, the affected nodes themselves in LYB
 LYB top-level subtrees with an attribute on the node-pointed-to in diff

 synchronized counter of subscriptions to process the diff changes
 synchronized flag whether the commit should continue (or failed)
 space for ID of SHM segment with error information if flag is set

Operational data subscription
 covers dp-get-items (both state and configuration data)
 XPath of the requested subtree
 space for ID of SHM with returned LYB operational data subtree
 new API could request all the data in one (or a few) call

 internally working like that (library waits until the whole subtree is returned)



SECONDARY SHM

Schema change subscription
 covers module-install, feature-enable
 name + revision of the module (+ feature name)

Operation subscription
 covers rpc, action, event-notification
 LYB tree of the operation
 space for ID of another SHM with a reply



SR_SET_ITEM

Candidate datastores
 in API only one candidate
 internally there will be one (other than the API-one) 

candidate datastore tied to every other writable datastore

sr_set_item(_str)()
 if no candidate datastore tied with the target datastore, 

create it
 make a copy of the target DS (only the affected model data trees)

 perform the small change in the candidate DS (if possible)
 change is client-exclusive (non-visible for other clients)



SR_COMMIT

sr_commit()
 rename to sr_apply_changes()?

 confusing collision of terms with NETCONF commit

 create diff comparing the current DS content with this candidate DS
 transform, provide it in the secondary SHM (1.), and signal 

subscriptions having filled secondary SHM ID (2.)
 first process subscription that is changing values, then all others

 subscribers can now access secondary SHM using the ID and process 
changes (3.)

 waits for subscriber counter to be 0 or fail flag set
 returns success or error

 in case of an error, it does not wait for subscriptions abort



SR_COMMIT



SR_COMMIT() SUBSCRIBER

sr_commit() subscriber
 gets notified

 based on its priority, maybe not all subscribers at once

 attaches to secondary SHM with diff and synchronization
 processes diff into desired format
 in loop until no changes left

 checks fail flag (breaks if true)
 applies another change (calls callback)
 stores rollback information

 on success decreases subscription counter
 but must wait until it reaches zero or fail flag is set
 then clears rollback data and finishes

 on error reads the error information and provides it to client
 must be clear that some other subscription generated the error

 on failure rollbacks all applied changes disregarding whether it succeeds or not



SR_GET_ITEM(S)()

sr_get_item(s)()
 finds all configuration data subscriptions without separate 

operational data callback
 gets these nodes from current datastore and creates a tree

 finds all relevant operational data subscriptions
 requests these data one subtree after another for each subscription
 merges them into the resulting tree

 returns the final tree
 converted to whatever format was requested

 reading the data from datastore and requesting operational data 
for each subscription could occur in parallel
 but probably wait with it and consider it an optimization



OPERATIONAL DATA 
SUBSCRIBER

sr_dp_get_items_subscribe() caller
 gets notified
 attaches to secondary SHM with XPath and space for new 

SHM ID
 gets the data from the client using callback

 following sysrepo get rules (data are requested individually for all 
depths and parents)

 merges them into one top-level subtree
 stores in LYB in a new SHM segment and sets back this 

SHM ID



OPERATION SUBSCRIPTIONS

sr_(rpc, action, event_notif)_subscribe() caller
 gets notified
 attaches to secondary SHM with operation (input) and space 

for new SHM ID (only for RPC and action)
 calls the callback with input
 gets output from client
 copies into separate SHM in LYB and provides the ID

Operation sender
 provides input, gets output if any
 analogous to other scenarios



VALIDATION

Validation
 validation of one model data tree
 start with this data tree
 learn about any possible foreign dependencies (leafrefs, 

instids, must, when nodes) from main SHM
 in the form of XPaths whose instances are looked for in the data 

tree

 if some found (are instantiated), merge also dependency 
data trees recursively (otherwise you do not need it)

 validate



ISSUES



DATA TREE LOCKING

Consistency
 many options depending on the behavior we require
 example commit situation

 commit 1 starts and is calling callbacks
 commit 2 starts, calls one callback, finishes and replaces the data tree
 commit 1 finishes and replaces the data tree again
 commit 2 changes are lost

 are we okay with this happening if no explicit locks are used?
 the locks will be available and this situation avoidable if required

 should commit 2 be allowed to start while commit 1 is in progress?
 should commit 1 detect commit 2 changes and keep them?

 preferred solution, keep all changes, when both commits modify same subtree, the 
second commit will fail

 option to require explicit locks for commits on a model during its installation?



DATA TREE LOCKING

Partial locks
 allow to lock particular subtrees/individual nodes
 would allow simultaneous changes of independent data

 meaning 2 commits changing independent data nodes/subtrees

 data dependencies
 leafrefs, instance-identifiers, must, when, multiple cases, uniqueness (leaf-lists, lists, 

list unique), others?
 all these dependencies, if not tracked, could cause unexpectedly invalid datastore or 

invalid operations (e.g. creating existing leaf-list)
 tracking of these dependencies non-trivial (both implementation effort and 

efficiency)

 not worth it in my opinion
 current solution of locking models separately and not the whole datastore is 

enough



RUNNING DATA RETRIEVAL

Config data with operational data callback set
 sr_get_items() is being processed and these data are 

requested

operational data callback fails
 ignore and treat as no data present? (current sysrepo)
 use the data from running DS?
 return no data but inform about error?

 preferred solution, we cannot send the error using NETCONF but 
can at least display it



VALUES VS SUBTREES

Currently, many API functions use 2 formats
 either subtrees (sr_node_t) or values (sr_val_t)
 in new sysrepo libyang data tree structures will internally be used 

everywhere
 proposed API change of all functions working with subtrees to use 

struct lyd_node * instead of sr_node_t
 structures include the same attributes

 some are just not accessible directly as an attribute
 e.g. to get module name, you must look into node->schema->module->name

 would become the most preferred (and most efficient) API variant
 transforming libyang nodes into current sysrepo subtree nodes would 

be non-trivial and inefficient



THE END


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

